翻訳と辞書
Words near each other
・ Gelett Burgess
・ Gelett Burgess Children's Book Award
・ Gelevara Deresi
・ Geleya
・ Geleyeh
・ Geleyerd, Mahmudabad
・ Geleznowia
・ Geležiai
・ Geležinis Vilkas
・ GELF
・ Gelfand
・ Gelfand pair
・ Gelfand representation
・ Gelfand ring
・ Gelfand–Graev representation
Gelfand–Kirillov dimension
・ Gelfand–Mazur theorem
・ Gelfand–Naimark theorem
・ Gelfand–Naimark–Segal construction
・ Gelfand–Raikov theorem
・ Gelfand–Shilov space
・ Gelfand–Zeitlin integrable system
・ Gelfingen
・ Gelfond's constant
・ Gelfond–Schneider constant
・ Gelfond–Schneider theorem
・ Gelgaudiškis
・ Gelgaudiškis Manor
・ Gelgel
・ Gelgel, Indonesia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Gelfand–Kirillov dimension : ウィキペディア英語版
Gelfand–Kirillov dimension
In algebra, the Gelfand–Kirillov dimension (or GK dimension) of a right module ''M'' over a ''k''-algebra ''A'' is:
:\operatorname = \sup_ \limsup_ \log_n \dim_k M_0 V^n
where the sup is taken over all finite-dimensional subspaces V \subset A and M_0 \subset M.
An algebra is said to have polynomial growth if its Gelfand–Kirillov dimension is finite.
== Basic facts ==

*The Gelfand–Kirillov dimension of a finitely generated commutative algebra ''A'' over a field is the Krull dimension of ''A'' (or equivalently the transcendence degree of the field of fractions of ''A'' over the base field.)
*In particular, the GK dimension of the polynomial ring k(\dots, x_n ) Is ''n''.
*(Warfield) For any real number ''r ''≥ 2, there exists a finitely generated algebra whose GK dimension is ''r''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Gelfand–Kirillov dimension」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.